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Abstract. Working over an algebraically closed field k of any characteristic, we de-
termine the matrix factorizations for the—suitably graded—triangle singularities f =
xa + yb + zc of domestic type, that is, we assume that (a, b, c) are integers at least two
satisfying 1/a+1/b+1/c > 1. Using work by Kussin–Lenzing–Meltzer, this is achieved by
determining projective covers in the Frobenius category of vector bundles on the weighted
projective line of weight type (a, b, c). Equivalently, in a representation-theoretic context,
we can work in the mesh category of Z∆̃ over k, where ∆̃ is the extended Dynkin diagram
corresponding to the Dynkin diagram ∆ = [a, b, c]. Our work is related to, but in methods
and results different from, the determination of matrix factorizations for the Z-graded sim-
ple singularities by Kajiura–Saito–Takahashi. In particular, we obtain symmetric matrix
factorizations whose entries are scalar multiples of monomials, with scalars taken from
{0,±1}.

1. Introduction. Assuming (a, b, c) is a triple of integers greater than
or equal to 2, we investigate the L-graded hypersurface S = k[x1, x2, x3]/(f)
determined by the triangle singularity f = xa1 + xb2 + xc3. Here, L = L(a, b, c)
is the rank one abelian group on generators ~x1, ~x2, ~x3 with relations a~x1 =
b~x2 = c~x3 =: ~c, and the generator xi from S is given degree ~xi (i = 1, 2, 3).
Note that the polynomial f is homogeneous of degree ~c, the canonical element
of L. Let X = X(a, b, c) be the associated weighted projective line, whose cat-
egory of coherent sheaves coh(X) is obtained from S by Serre’s construction
as the quotient category modL(S)/modL

0 (S) (see [GL87, Section 1.8]). Sheafi-
fication, given by the natural quotient functor q : modL(S)→ coh(X), then
induces an equivalence between the full subcategory CML(S) of L-graded
(maximal) Cohen–Macaulay modules over S and the category vect(X) of
vector bundles on X [GL87, Theorem 5.1]. Since S is graded Gorenstein,
CML(S) is a Frobenius category with respect to the exact structure in-
herited from the abelian category modL(S) of finitely generated L-graded
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S-modules. With respect to this structure, the graded maximal Cohen–
Macaulay modules of rank one form the indecomposable projective-injectives
of CML(S). The corresponding stable category CML(S) is triangulated. It
is equivalent to the singularity category SingL(S) introduced and studied by
Buchweitz [Buc86] in the ungraded case and by Orlov [Orl09] in the graded
case.

Important for the present paper is an alternative description of a sin-
gularity category as the stable category of vector bundles vect(X) on the
weighted projective line X (see [KLM13]). To define this category, we call a
sequence η : 0 → E′ → E → E′′ → 0 of vector bundles distinguished-exact
if Hom(L, η) is exact for each line bundle L on X. With the exact structure
defined by these sequences, the category vect(X) of vector bundles on X is
a Frobenius category, equivalent to CML(S), such that the indecomposable
projective-injectives are just the line bundles on X. A fortiori, the stable
category CML(S) of Cohen–Macaulay modules is equivalent to the factor
category vect(X) = vect(X)/[L], where [L] is the ideal consisting of all mor-
phisms factoring through a finite direct sum of line bundles.

By results of Buchweitz [Buc86] and Orlov [Orl09], it is known that the
singularity category SingL(S), in the L-graded sense, and the category of
L-graded maximal Cohen–Macaulay modules CML(S) are equivalent. Thus
the stable category of vector bundles vect(X) is another incarnation of the
singularity category. In addition, all these categories are triangle equivalent
to MFL(T, f), the stable category of L-graded matrix factorizations of f over
the polynomial algebra T = k[x1, x2, x3].

For a base field of characteristic zero, a related category of graded matrix
factorizations of a Z-graded simple singularity was investigated by H. Ka-
jiura, K. Saito and A. Takahashi [KST07]. While these authors work directly
inside the category of matrix factorizations, we work inside the category of
vector bundles on the associated weighted projective line, and exploit well-
known results on the Auslander–Reiten theory of vect(X). By contrast, our
paper takes as a starting point the study of triangle singularities, and the
associated stable category of vector bundles [KLM13]. Accordingly, we work
over an algebraically closed field k of arbitrary characteristic. We recall that
χX = 1−(1/a+1/b+1/c) is the Euler characteristic of X such that domestic
type for X relates to positive Euler characteristic.

For a weighted projective line X of domestic weight type (a, b, c), the
main achievement of our paper is two-fold: (A) a complete description of
the projective covers (resp. the injective hulls) of indecomposable vector
bundles, and (B) a complete description of all L-graded matrix factorizations
for singularities f = xa1 + xb2 + xc3 for indecomposable L-graded (maximal)
Cohen–Macaulay modules.
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To achieve (A), we start with a fundamental result from [KLM13] on the
projective covers, and likewise the injective hulls, of indecomposable vec-
tor bundles of rank two. For this first step there is no restriction on the
Euler characteristic. Then in the second step, assuming domestic type, we
use the knowledge of the Auslander–Reiten quiver for the category vect(X),
and use properly chosen distinguished-exact sequences to “extend” the pro-
jective covers to indecomposable bundles of higher rank. To achieve (B),
we then lift minimal projective resolutions in CML(S) = vect(X) to matrix
factorizations. As a key ingredient of the proof, we use the fact that the
indecomposable vector bundles involved are uniquely determined by their
projective covers (see Proposition 3.11).

We remark that step (A) has a direct interpretation in the representation
theory of path algebras of extended Dynkin quivers: Assuming domestic
type, it follows from a combination of [GL87] and [Hap88] that the category
of indecomposable vector bundles on X is equivalent to the mesh category
k(Z∆) for the extended Dynkin star ∆ = [a, b, c]. Our results on projective
covers and matrix factorizations thus offer new insight in the nature of the
representation theory for path algebras of extended Dynkin type.

2. Basic concepts. We briefly recall the concept of a weighted projec-
tive line, where we restrict to the case of triple weight type, given by weight
triples (a, b, c) of integers greater than or equal to 2. For a more general set-
ting and further details we refer to [GL87]. Throughout the present paper,
k denotes an algebraically closed field.

Let L = L(a, b, c) be the rank one abelian group on generators ~x1, ~x2, ~x3

with relations a~x1 = b~x2 = c~x3 =: ~c, where ~c is called the canonical ele-
ment. We note that L is naturally isomorphic to the Picard group of X. The
polynomial algebra T = k[x1, x2, x3], T = T (a, b, c), is equipped with an L-
grading by giving xi degree ~xi for each i = 1, 2, 3. Further, let S = S(a, b, c)
denote the factor algebra k[x1, x2, x3]/(f), where f = xa1 + xb2 + xc3. Be-
cause f is a homogeneous polynomial, the algebra S is also L-graded; by
S~x we denote the finite-dimensional vector space of elements of degree ~x.
The weighted projective line X = X(a, b, c) is by definition the L-graded
projective spectrum of the L-graded algebra S. By [GL87] its category of
coherent sheaves coh(X) is obtained by Serre’s construction as the quotient
category of modL(S), the category of finitely generated L-graded S-modules,
by the Serre subcategory modL

0 (S) of all finite-dimensional (= finite length)
modules. By q : modL(S)→ coh(X), M 7→ M̃ , we denote the corresponding
quotient functor (sheafification).

For the present paper, the following result is of importance. For its proof,
we refer to [GL87, Theorem 5.1], and for the last claim to [KLM13]. From the
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first paper we take the following description of L-graded (maximal) Cohen–
Macaulay modules: A finitely generated L-graded S-moduleM is (maximal)
Cohen–Macaulay if and only if Hom(k(~x),M) = 0 = Ext1(k(~x),M) for each
~x ∈ L. Hereafter, Cohen–Macaulay will always mean maximal L-graded
Cohen–Macaulay.

Proposition 2.1. The sheafification functor q : modL(S) → coh(X),
M 7→ M̃ , induces an equivalence q : CML(S)

≈−→ vect(X) between the cat-
egory CML(S) of finitely generated L-graded S-modules and the category
vect(X) of vector bundles on X. This functor also induces an equivalence be-
tween the full subcategories projL(S) of finitely generated L-graded projective
modules and the category L of line bundles on X. Accordingly, q induces a
triangle equivalence between the stable categories CML(S) and vect(X).

We now collect some facts on coh(X). This category is hereditary, that
is, all extensions of degree ≥ 2 vanish, and it admits Serre duality in the
form DExt1

X(F,G) ' HomX(G, τXF ), where D denotes the usual duality
Homk(−, k) and τXF = F (~ω), where ~ω = ~c−

∑3
i=1 ~xi is the dualizing element

of L. Consequently, coh(X) has almost-split sequences, and the Auslander–
Reiten translation τX is a self-equivalence of coh(X) given by the degree shift
X 7→ X(~ω).

The complexity of the classification problem of vector bundles on X is
largely determined by the Euler characteristic of X, given by the expression
χX = 1/a + 1/b + 1/c − 1. A weighted projective line X is said to be of
domestic type if χX > 0. Consequently, in our setup, X(a, b, c) is of domestic
type if and only if the weight type is, up to permutation, one of the following:
(2, 2, n) (n ≥ 2), (2, 3, 3), (2, 3, 4), or (2, 3, 5).

The concept of matrix factorizations was introduced by D. Eisenbud
[Eis80]. For a textbook treatment we refer to [Yos90]. We recall the defi-
nition and some basic facts, adapted to the present L-graded setting. Let
T = k[x1, x2, x3] be the polynomial algebra, viewed as L-graded algebra,
and fix the polynomial f = xa1 +xb2 +xc3. An L-graded matrix factorization of
f is a pair of homogeneous T -linear maps ϕ : P1 → P0 and ψ : P0 → P1(~c )
for L-graded projective T -modules P0 and P1, denoted

(2.1) P1
ϕ

�
ψ
P0,

such that the compositions ϕψ(−~c ) : P0(−~c ) → P0 and ψϕ : P1 → P1(~c )
are both the multiplication maps with f . Since P0 and P1 are L-graded free
T -modules, we may think of ϕ and ψ and f1 as matrices whose entries
are homogeneous members of T such that the two factorization conditions
translate to the matrix equation ϕψ = f1 = ψϕ. We note that the degree
shifts involvedwill mostly be clear from the context. For thematrix description
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of a matrix factorization (2.1), we always assume that the decompositions of
P0 and P0(−~c ) (respectively P1 and P1(~c )) into projectives of rank one are
compatible, that is, correspond to each other by degree shiftX 7→ X(−~c ). We
note further that when describing a matrix factorization by matrices, we need
to keep track of the direct sum decompositions of P0 and P1 into line bundles.

For two matrix factorizations P1
ϕ

�
ψ
P0 and P ′1

ϕ′

�
ψ′
P ′0, a pair (F1, F0) of

(homogeneous) T -linear maps is called a morphism of matrix factorizations
if the diagram

P0(−~c )
ψ(−~c ) //

F0(−~c )
��

P1

F1

��

ϕ // P0

F0

��
P ′0(−~c )

ψ′(−~c ) // P ′1
ϕ′ // P ′0

is commutative. Thinking of F1 and F0 (and also ϕ and ψ) as matrices whose
entries are homogeneous elements from T , the two commutativity conditions
(2.1) translate to matrix equations F0ϕ = ϕ′F1 and F1ψ = ψ′F0. We remark

that a matrix factorization P1
ϕ

�
ψ
P0 is indecomposable if and only if its

endomorphism ring is local.
For any L-graded matrix factorization (2.1), the cokernel M =

cok(P1
ϕ−→ P0) is annihilated by f , hence belongs to modL(S). Actually,

M belongs to CML(S), and is called the (maximal) graded Cohen–Macaulay
S-module determined by (ϕ,ψ), also denoted as cok(ϕ,ψ). Let MFL(T, f) de-
note the category of all L-graded matrix factorizations of f over T . Let U de-
note the full subcategory of trivial matrix factorizations (1, f). Then the as-
signment (ϕ,ψ) 7→ cok(ϕ) establishes an equivalence between the factor cate-
gory MFL(T, f)/[U ] and the category CML(S) of L-graded Cohen–Macaulay
modules over S. By means of the equivalence q : CML(S) → vect(X),
we may as well speak of the vector bundle E = q(cok(ϕ)) determined by
the matrix factorization (ϕ,ψ). For any projective T -module, the functor

cok : MFL(T, f) → CML(S) sends P
1

�
f
P to zero and P (−~c )

f

�
1
P to the

projective S-module P̄ = P/f.P , and all projective S-modules are obtained
in this way.

We are now in a position to formulate Eisenbud’s matrix factorization
theorem [Eis80], adapted to our L-graded context. We follow Yoshino’s pre-
sentation [Yos90].

Theorem 2.2. Let U , respectively U , be the full subcategory of MFL(T, f)

consisting of all P
1

�
f
P , respectively of all matrix factorizations P

1

�
f
P
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and P (−~c )
f

�
1
S. Then the functor cok : MFL(T, f) → CML(S) induces

equivalences

MFL(T, f)/[U ]→ CML(S) and MFL(T, f)/[U ]→ CML(S).

Moreover, the suspension functor of the triangulated category CML(S) is

induced by the (functorial) expression (P1
ϕ

�
ψ
P0)[1] = P0

ψ

�
ϕ
P1(~c ).

We say that a matrix factorization P0
ϕ

�
ψ
P1 is reduced if ϕ and ψ belong

to the radical of modL(T ), that is, if viewed as matrices, ϕ and ψ have
entries in the graded maximal ideal (x1, x2, x3) of T . The cokernel M of a
reduced matrix factorization is an L-graded Cohen–Macaulay module over
S = T/(f) without projective summands; moreover, iterating the formation
of matrix factorizations of f over T , we obtain a sequence

(2.2) · · · ψ−→ P1(−~c )
ϕ−→ P0(−~c )

ψ−→ P1
ϕ−→ P0 →M → 0

of matrix factorizations which is 2-periodic up to degree shift with ~c. Reduc-
tion modulo (f) then yields the sequence

(2.3) · · · ψ̄−→ P̄1(−~c )
ϕ̄−→ P̄0(−~c )

ψ̄−→ P̄1
ϕ̄−→ P̄0 →M → 0,

which is a minimal L-graded projective and 2-periodic resolution of M
over S. Here, the bar always stands for reduction modulo f .

In order to determine a matrix factorization P1
ϕ

�
ψ

P0 for a Cohen–

Macaulay module M without projective summands, we will first determine
the minimal projective resolution (2.3) of M over S, and then lift the S-
matrix pair (ϕ̄, ψ̄) to a matrix pair (ϕ,ψ) over T , such that additionally
ϕψ = f1 = ψϕ.

For weight triples (2, a, b), the suspension functor [1] for vect(X) is in-
duced by the degree shift X 7→ X(~x1) by ~x1 (see [KLM13, Proposition 6.8]).
This allows us to introduce the concept of a symmetric matrix factorization
of f for a graded Cohen–Macaulay module M without projective summands
(correspondingly for a vector bundle E without line bundle summands).

Namely, we call a matrix factorization P1
ϕ

�
ψ
P0 for M symmetric—recall

that then ϕ : P1 → P0 and ψ : P0 → P1(~c ) are homogeneous T -linear
maps—provided P0 = P1(~x1) and ψ = ϕ(~x1). Note that this requirement
makes sense since 2~x1 = ~c. In this case, by abuse of notation, we will—as
for ungraded symmetric matrix factorizations—also write ϕ = ψ. We will
show in Section 5 that for weight type (2, a, b), each indecomposable vector
bundle of rank two is determined by a symmetric matrix factorization of f .
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Moreover, if we deal with domestic type, necessarily given by a weight triple
(2, a, b), then each indecomposable vector bundle of rank at least two will
admit a symmetric matrix factorization by Theorem 5.4.

For a weight triple (p1, p2, p3) we set p̄ = l.c.m.(p1, p2, p3). There is a
unique group homomorphism δ : L → Z called the degree map which sends
~xi to p̄/pi. The kernel of δ is the torsion group tL of L. Further, there is
a unique group homomorphism deg : K0(coh(X)) → Z, called the degree,
such that deg([O(~x)]) = δ(~x) for each ~x ∈ L. For each non-zero X ∈ coh(X)
at least one of rk(X) or deg(X) is non-zero, yielding a well defined slope
µ(X) = deg(X)/rk(X) in the extended rationals Q ∪ {∞}. The slope of an
indecomposable object X is a useful indicator of the position of X in the
category coh(X). In the domestic situation, moreover, each indecomposable
vector bundle X is stable, that is, satisfies µ(X ′) < µ(X) for each proper
subobject 0 6= X ′ ( X. Still assuming domestic type, stability of a non-zero
vector bundle X implies End(X) = k and Ext1

X(X,X) = 0, that is, the
exceptionality of X. For all foregoing facts see [GL87].

Sometimes a refinement of the degree, called determinant, is necessary.
This is a group homomorphism det : K0(coh(X)) → L such that det(O(~x))
= ~x for each ~x ∈ L. In particular, deg = δ ◦ det (see [LM92, 2.7]).

By means of a line bundle filtration for a vector bundle E one further
obtains the formula

(2.4) det(E(~x)) = det(E) + rk(E) · ~x for all ~x ∈ L.

We finally recall from [GL87] that the category coh(X) has almost split
sequences with the Auslander–Reiten translation given by degree shift X 7→
X(~ω) with the dualizing element ~ω = ~c−

∑3
i=1 ~xi.

The category of vector bundles for domestic weight triples. Re-
call that a weight triple (a, b, c) with entries ≥ 2 has domestic type if and
only if it is one of (2, 2, n), n ≥ 2, (2, 3, 3), (2, 3, 4), or (2, 3, 5). The shape of
the Auslander–Reiten quiver of vect(X) is then Z∆, where ∆ is the extended
Dynkin diagram, attached to the Dynkin star [a, b, c]. The category of inde-
composable vector bundles is then equivalent to the mesh category k(Z∆).
In this case, the stable category vect(X) is equivalent to the bounded derived
category Db(mod(Λ)) for the path algebra Λ = kQ of Dynkin type ∆′ ob-
tained from ∆ by removing all vertices where the standard additive function
on ∆ takes value 1 [KLM13, Section 5.1]. The table below summarizes the
situation.

Weight triple (2, 2, n) (2, 3, 3) (2, 3, 4) (2, 3, 5)

∆ D̃n+2 Ẽ6 = [3, 3, 3] Ẽ7 = [2, 4, 4] Ẽ8 = [2, 3, 6]

∆′ An−1 = [n− 1] D4 = [2, 2, 2] E6 = [2, 3, 3] E8 = [2, 3, 5]
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For the rest of the paper, it is important to understand how the Picard
group L acts on the mesh category k(Z∆), or on the underlying translation
quiver Z∆, by degree shift. We illustrate this for the weight triple (2, 3, 4),
where a piece of the Auslander–Reiten quiver is depicted below. The consid-
erations are similar for other domestic weight triples. We first remark that
the rank of vector bundles is constant on τ -orbits; the values of the rank are
displayed at the right end.

◦

��

◦

��

◦

��

◦

��

(~x3)

��

◦

��

◦

��

(~x1)

��

1

◦

??

��

◦

??

��

◦

??

��

◦

??

��

◦

??

��

◦

??

��

◦

??

��

◦

??

��

2

??

��
◦

??

��

◦

??

��

◦

??

��

◦

??

��

◦

??

��

◦

??

��

◦

??

��

◦

??

��

3

◦

??

��

// ◦ // ◦

??

��

// ◦ // ◦

??

��

// ◦ // ◦

??

��

// ◦ // ◦

??

��

// ◦ // ◦

??

��

// ◦ // ◦

??

��

// ◦ // ◦

??

��

// ◦ // 4

??

��

// 2

◦

??

��

◦

??

��

◦

??

��

◦

??

��

◦

??

��

◦

??

��

◦

??

��

◦

??

��

3

◦

??

��
◦

??

��
◦

??

��

◦

??

��

◦

??

��

◦

??

��
◦

??

��

◦

??

��

2

??

��
(~ω)

??

(~0)

??

◦

??

◦

??

◦

??

(~x2)

??

◦

??

◦

??

1

We thus have two τ -orbits of line bundles, the lower and the upper
border, three τ -orbits of indecomposable rank-two bundles, two τ -orbits of
indecomposable bundles of rank 3 and a single τ -orbit of rank 4. Since the
Picard group acts transitively on the iso-classes of line bundles, we may freely
choose the position of the structure sheaf from one of the two line bundle
orbits. Once this is done, the position of the other line bundles is fixed, up to
a symmetry of Z∆. To indicate the position of a line bundle O(~x), we use the
bracket notation (~x) such that the structure sheaf is given by the symbol (~0),
and its Auslander–Reiten translate τO is given by the symbol (~ω), where ~ω =
~c−(~x1+~x2+~x3) and hence δ(~ω) = −1. This now allows us to determine easily
the values of the degree function for each indecomposable vector bundle. Since
O(~x3) has degree 3 and HomX(O,O(~x3)) = k, there is only one choice for the
position (~x3), once the position (~0) has been fixed. All further line bundles are
then given by one of the symbols (~0+n~ω), respectively (~x3 +n~ω), with n ∈ Z.

Corresponding to the positions (~x1), (~x2) and (~x3) in the mesh category,
the shift actions by ~x1, ~x2 and ~x3 are given as follows: The shift by ~x1

(resp. ~x3) is a glide reflection, composed with reflection with respect to the
central horizontal axis with the sixth resp. third power of τ−. Further, the
shift action by ~x2 equals τ−4.

Finally, let us remark that, obviously, the factor category vect(X)/[L]
obtained from vect(X) for X = X(2, 3, 4) by factoring out the two line bundle
orbits yields the mesh category k(ZE6), equivalent to Db(mod(kQ)) for a
quiver Q of type E6, thus illustrating the facts mentioned at the beginning
of this section.
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Remark 2.3. In view of Theorem 3.3, it is useful to interpret the degree
shift by ~x1 in terms of the Auslander–Reiten quiver of vect(X) resp. vect(X).
For this, we assume domestic type (2, a, b).

• For type (2, 3, 5) we have ~x1 = −15~ω. Thus the degree shift by ~x1 is
translation to the right by 15 mesh units.
• For type (2, 3, 4) we have ~x1 = −6~ω + (~x1 − 2~x3). We note that the

element ~x1 − 2~x3 has order two. Thus the degree shift by ~x1 is the glide
reflection given by composing reflection in the central axis with translation
to the right by 6 mesh units.
• For type (2, 3, 3), we have ~x1 = −3~ω, and the degree shift by ~x1 is

translation to the right by 3 mesh units.
• For type (2, 2, n), we use the fact that the degree shifts by ~x1, ~x2 and −~ω

agree on objects of vect(X) [KLM13, p. 235], and only deal with the shift
action of ~x1 on objects of vect(X). Further, we need to distinguish whether
n is even or odd: For n = 2k (resp. n = 2k + 1) the degree shifts by −k~ω
and ~x1 + (k~x3 − ~x1) (resp. by −k~ω and ~x1 + (k~x3 − ~x1)) agree on objects
of vect(X). In the first case the element k~x3 − ~x1 has order two, while in
the second case we obtain 2(k~x3 − ~x1) = −~x3. Hence the degree shift by ~x1

on the Auslander–Reiten quiver of vect(X) is the glide reflection given by
composing reflection in the central axis with translation to the right by k
mesh units (resp. by k + 1/2 mesh units).

3. Projective covers. When speaking of weight triples, we always as-
sume that the weights are at least two. In the domestic case this just excludes
the weight types ( ), (a) and (a, b) where each indecomposable vector bun-
dle is a line bundle, and the matrix factorization problem thus becomes
trivial.

General results. Assuming an arbitrary weight triple (p1, p2, p3), this
section starts by quoting two general results [KLM13, Theorems 4.2 and 4.6]
on indecomposable vector bundles of rank two and their projective covers in
vect(X). We recall that the double suspension functor for vect(X) is induced
by degree shift with the canonical element ~c. Moreover, for weight triples
(2, a, b), the suspension functor itself is induced by the degree shift with ~x1

[KLM13, Proposition 6.8]. Switching now to weight triples of domestic type,
necessarily of type (2, a, b), the aim of this section is to determine the pro-
jective cover (and likewise the injective hull) for each indecomposable vector
bundle of rank ≥ 2.

We assume triple weight type (p1, p2, p3). Let δ = ~c+2~ω be the dominant
element of L. The elements ~0 ≤ ~x ≤ ~δ then have the form ~x =

∑3
i=1 li~xi

with 0 ≤ li ≤ pi − 2. Following [KLM13, Section 4], a vector bundle E of
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rank 2 is called an extension bundle if E is the middle term of a non-split
exact sequence

(3.1) η~x : 0→ L(~ω)→ E → L(~x)→ 0,

where L is a line bundle and ~0 ≤ ~x ≤ ~δ. Because Ext1
X(L(~x), L(~ω)) = k,

the bundle E is uniquely determined, up to isomorphism; we then denote E
by EL〈~x〉. For L = O we just write E〈~x〉. If ~x = 0, then the sequence η~x is
almost-split, and E = EL〈0〉 is called an Auslander bundle, more precisely
the Auslander bundle attached to L. Applying degree shift by ~y from L to
the exact sequence (3.1), we obtain the useful identity

(3.2) (EL〈~x〉)(~y) ∼= EL(~y)〈~x〉 for all 0 ≤ ~x ≤ δ, ~y ∈ L.

We recall that an object E in an abelian (resp. a triangulated) cat-
egory is exceptional if End(E) = k and further Extd(E,E) = 0 (resp.
Hom(E,E[d]) = 0) for each integer d 6= 0. For objects of a hereditary cate-
gory, like coh(X), the Ext-condition only has to be checked for d = 1.

The following three theorems from [KLM13] mark the starting point of
our investigation. For the first one we refer to Theorem 4.2 and Corollary 4.11
from the cited paper, and for the second one to Theorem 4.6 there. We recall
that ~δ =

∑3
i=1(pi − 2)~xi denotes the dominant element of L.

Theorem 3.1 (Vector bundles of rank two). Assume X is given by a
weight triple (p1, p2, p3). Then:

(i) Each indecomposable vector bundle of rank two is isomorphic to an
extension bundle EL〈~x〉 for a suitable choice of a line bundle L and
an element ~x from L satisfying 0 ≤ ~x ≤ ~δ.

(ii) Each indecomposable vector bundle of rank two is exceptional in the
category coh(X) of coherent sheaves on X. It is also exceptional in
the stable category of vector bundles vect(X).

Theorem 3.2 (Projective and injective covers). Assume X is given by
the weight triple (p1, p2, p3). Let EL〈~x〉, 0 ≤ ~x ≤ ~δ, be an extension bundle.
Then its injective hull I(EL〈~x〉) and its projective cover P(EL〈~x〉) are given
by

I(EL〈~x〉) = L(~x)⊕
3⊕
i=1

L((1 + li)~xi + ~ω),(3.3)

P(EL〈~x〉) = L(~ω)⊕
3⊕
i=1

L(~x− (1 + li)~xi),(3.4)

where ~x = l1~x1 + l2~x2 + l3~x3.
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Further, the four line bundle summands (Li)
3
i=0 of I(EL〈~x〉) (resp.

P(EL〈~x〉)) are mutually Hom-orthogonal, that is,

Hom(Li, Lj) =

{
k if i = j,
0 if i 6= j.

The next result is a straightforward consequence of [KLM13, Proposition
6.8].

Theorem 3.3 (Weight type (2, a, b)). Let X be the weighted projective
line of type (2, a, b) and E be an indecomposable vector bundle of rank at
least 2. There is a distinguished short exact sequence

0→ E(−~x1)→ P(E)
πE−−→ E → 0,

where P(E) is the projective cover of E, and likewise for the injective hull
I(E(−~x1)) of E(−~x1). In particular, I(E) = P(E)(~x1) and rk(P(E)) =
2 rk(E).

The following variant of the ‘horse-shoe lemma’ from homological algebra
will be used to determine projective covers for vector bundles of larger rank.
A dual result is valid for injective hulls.

Lemma 3.4. We assume weight type (2, a, b). Let X and Y be vector
bundles with projective covers P(X)

πX−−→ X and P(Y )
πY−−→ Y . Let

(?) 0→ X
f−→ E

g−→ Y → 0

be a distinguished exact sequence in vect(X). (This condition is satisfied if (?)
is exact and Ext1

X(P(Y ), X) is zero.) Then πY lifts to a map π∗Y : P(Y )→ E
yielding a commutative diagram

0 // P(X) //

πX
��

P(X)⊕P(Y ) //

[fπX ,π
∗
Y ]

��

P(Y ) //

πY
��

0

0 // X
f // E

g // Y // 0

which establishes P(X) ⊕ P(Y ) as a projective cover of E. Moreover, the
rows of the diagram are distinguished exact and the vertical maps are distin-
guished epimorphisms.

Proof. We show that the condition Ext1
X(P(Y ), X) = 0 implies that (?)

is distinguished exact. Indeed, applying the functor HomX(P(Y ),−) to the
exact sequence (?), we obtain a short exact sequence

0→ HomX(P(Y ), X)
f◦−−−→ HomX(P(Y ), E)

g◦−−−→ HomX(P(Y ), Y )

→ Ext1
X(P(Y ), X) = 0

showing that each morphism from P(Y ) to X lifts to E. By definition of the
projective cover, each morphism from a line bundle L to Y lifts to P(Y ).
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Putting things together, any morphism from a line bundle L to Y lifts to
a map L → E, showing that (?) is distinguished exact. Any of the two
assumptions thus ensures that πY lifts to a map α : P(Y ) → E yielding
the above diagram, and its claimed properties, by standard arguments of
(relative) homological algebra.

It remains to explain why the minimality condition for the distinguished
epimorphism πE : P(X)⊕P(Y )→ E holds. Because of weight type (2, a, b),
we know from Theorem 3.3 that P(E) and P(X) ⊕ P(Y ) have the same
rank 2 rk(E), which ensures the claim.

We keep assuming weight type (2, a, b). To obtain minimal projective
resolutions, we have to determine those morphisms that are compositions
of a projective cover P(E)

πE−−→ E with the corresponding injective hull
E

jE−→ I(E). The resulting morphism uE : P(E) → I(E), uE = jEπE , will
be called a cover morphism for E. (Note that such cover morphisms depend
on the projective cover and injective hull chosen.) Again, we reduce the
determination of cover morphisms to the case of smaller rank.

Lemma 3.5. Let X be of weight type (2, a, b). Let (?) be as in Lemma 3.4.
Let uX (respectively uY ) be a cover morphisms for X (respectively Y ). Then
we obtain a cover morphism for E having the shape

uE =

[
uX β ◦ α
0 uY

]
where g ◦ α = πY and β ◦ f = jX .

Proof. From Lemma 3.4 we obtain the following commutative diagram
with exact rows:

0 // P(X)

[
1

0

]
//

πX

��

P(X)⊕P(Y )
[0 1]

//

[f ◦ πX , α]

��

P(Y ) //

πY

��

0

0 // X
f //

jX

��

E

[
β

jY ◦ g

]

��

g // Y //

jY

��

0

0 // I(X)

[
1

0

]
// I(X)⊕ I(Y )

[0 1]
// I(Y ) // 0
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Therefore

uE = uE(~x1) =

[
β

jY ◦ g

]
◦
[
f ◦ πX α

]
=

[
β ◦ f ◦ πX β ◦ α

jY ◦ g ◦ f ◦ πX jY ◦ g ◦ α

]

=

[
jX ◦ πX β ◦ α

0 jY ◦ πY

]
=

[
uX(~x1) β ◦ α

0 uY (~x1)

]
=

[
uX β ◦ α
0 uY

]
.

From now on, we restrict to weighted projective lines X of domestic type.
For each of the weight types (2, 2, n), (2, 3, 3), (2, 3, 4) and (2, 3, 5) we deter-
mine in Propositions 3.6–3.9 the projective covers of indecomposable vector
bundles, and thus by Theorem 3.3 also their injective hulls. The following
propositions list from each Auslander–Reiten orbit of indecomposables of
rank r ≥ 2 a particular member, say E, and represent its projective cover
P(E) =

⊕2r
i=1O(~yi) by the sequence ~y1, . . . , ~y2r (including multiplicities).

For the switch I(E) = P(E)(~x1) from projective covers to injective hulls we
refer to the interpretation of the degree shift by ~x1 given in Remark 2.3.

Case (2, 2, n). In this case the Auslander–Reiten quiver of vect(X) has
shape ZD̃n+2. Note that we need to distinguish the cases of n even (resp.
n odd): For a given integral slope, there are exactly four (resp. two) line
bundles if n is even (resp. if n is odd).

◦

��
◦

��
◦

��
◦ ��

(~x1+~ω)
◦

◦ // •

??
//

��
◦ // •

��

//
??

◦ // • ��
//
??

◦ //
En−2
•

��

//
??

◦
(~x2+~ω)

•

��

??

•

��

??

• ��

??
En−3
•

��

??

•

•

??

•

??
En−4
•

??

•

??

•

��
•
��

E3•

��
•

��
•

•
��

??
E2•

��

??

•

��

??

•

��

??

•
��

??
E1•

��

??

•

��

??

•

��

??

•

◦
(−~x3)
// E0•

��

??
// ◦ // •

��

??
// ◦
(~x3)
// •
��

??
// ◦ // •

��

??
// ◦
(3~x3)

◦
(~ω)

??

◦
(~0)

??

◦

??

◦
(2~x3)

??

◦

◦

��
◦

��
◦ ��

(~x1+~ω)
◦

��
•

??

��

// ◦ // •

??

��

// ◦ // •

??

��
// ◦ //

En−2
•

??

��

// ◦
(~x2+~ω)

// •

•

??

•

??
En−3
•

??

•

??

•

��
•
��

E3•

��
•

��
•

•
��

??
E2•

��

??

•

��

??

•

��

??

•
��

??
E1•

��

??

•

��

??

•

��

??

•

◦
(−~x3)
// E0•

��

??
// ◦ // •

��

??
// ◦
(~x3)
// •
��

??
// ◦ // •

��

??
// ◦
(3~x3)

◦
(~ω)

??

◦
(~0)

??

◦

??

◦
(2~x3)

??

◦

n even n odd

Here, the symbol • (resp. ◦) marks the position of a vector bundle of rank 2
(resp. of a line bundle). Specifically, for key values of ~x in L, the position of
the line bundle O(~x) is indicated by the bracket symbol (~x). Moreover, we
have marked the position of n− 1 vector bundles E0, . . . , En−2 of rank two,
one for each τ -orbit.

Proposition 3.6. We assume weight type (2, 2, n) and refer to the no-
tation in the above figure. Each indecomposable vector bundle that is not a
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line bundle has rank two. It lies in the τ -orbit of exactly one of the extension
bundles E0, . . . , En−2, where Ei is determined by the pair (O, i~x3). Moreover,

P(Ei) = O(~ω)⊕O(i~x3 − ~x1)⊕O(i~x3 − ~x2)⊕O(−~x3).

Proof. There are non-split exact sequences 0 → O(~ω) → Ei → O(i~x3)
→ 0. Therefore Ei is isomorphic to the extension bundle E〈i~x3〉, and the
claim concerning projective covers follows from Theorem 3.2.

Case (2, 3, 3). In this case, we have three τ -orbits of line bundles, and
the Auslander–Reiten quiver of vect(X) has shape ZẼ6:

◦
◦

""
(~x3)◦

""◦

""

•

BB

""
◦

""

•

BB

""
•

BB

""

•
F2•

BB

""

•

BB

++•

BB

++
•

++

KK

•

BB

++
•

++

KK

◦
E3•

BB

++�� •
++

KK

◦

KK

•
E2 ��

66

•
G2 ++

KK

◦
(~x2)

KK

◦ ◦

KK

◦
(~0)

66

◦
KK

For each τ -orbit of line bundles, we select one member, in bracket notation
the line bundles O, O(~x2) and O(~x3). Also, as indicated in the figure, for
each of the four remaining τ -orbits, we select one member, resulting in three
rank-two bundles E2, F2 and G2 and one bundle E3 of rank three.

Proposition 3.7. We assume weight type (2, 3, 3) and refer to the no-
tation in the above figure. Then each indecomposable bundle of rank at least
two lies in the τ -orbit of exactly one of the vector bundles E2, F2, G2 and
E3, where the subscript indicates rank. The projective covers of these vector
bundles are given in the table below:

Vector bundle Projective cover

E2 ~0, −~ω − ~x1, −~ω − ~x2, −~ω − ~x3
F2 ~x2 − ~x3, −~x2, ~x2 − ~x1, ~ω
G2 2~x2 − 2~x3, −~x3, ~ω, ~x3 − ~x1
E3 ~ω, 2~ω, ~x3 + 3~ω, ~x3 + 4~ω, ~x2 + 3~ω, ~x2 + 4~ω

Proof. With the generator u := ~x2 − ~x3 of the torsion group tL of L,
the extension term Hi of the almost-split sequence 0 → O(i~u) → Hi →
O(i~u− ~ω)→ 0 equals E2, F2 or G2 for i = 0, 1 or 2, respectively. By means
of Theorem 3.2, the claim on their projective covers follows. It thus remains
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to determine the projective cover for E3. We note that each distinguished
exact sequence with middle term of rank three necessarily splits. Hence for
vector bundles of rank 3 it is not possible to use the horse-shoe argument
from Lemma 3.4 in order to reduce the determination of projective covers to
smaller rank. We thus need to give a direct argument:

Setting F := E2(~ω), we obtain short exact sequences

0→ F
iE3−−→ E3

πE3−−→ O(−~ω)→ 0, 0→ O(~ω)
iF−→ F

πF−−→ O → 0.

For i = 1, 2, 3 there are non-zero maps x(−~ω)
i : O(−~ω − ~xi) → O(−~ω), xi :

O(−~xi)→ O. Because Ext1
X(O(−~ω−~xi),O(~ω)) = 0 = Ext1

X(O(−~ω−~xi),O)

there are maps y(−~ω)
i : O(−~ω − ~xi) → E3 such that πE3 ◦ y

(−~ω)
i = x

(−~ω)
i

for each i = 1, 2, 3. Since further Ext1
X(O(−~xi),O) = 0, there are maps yi :

O(−~xi)→ F such that πF ◦yi = xi. We now show that each map t : L→ E3,
with L a line bundle, factors through π = (iE3 ◦ iF , (iE3 ◦ yi), (y

(−~ω)
i ))i=1,2,3.

We can assume that πE3 ◦ t : L → O(−~ω) is not an isomorphism. Then
πE3 ◦ t =

∑3
i=1 x

(−~ω)
i ◦ ti, where ti : L → O(−~xi~ω). Hence πE3 ◦ t =∑3

i=1 x
(−~ω)
i ◦ ti =

∑3
i=1 πE3 ◦ y

(−~ω)
i ◦ ti, so πE3(t −

∑3
i=1 y

(−~ω)
i ◦ ti) = 0.

Therefore there is a map g : L→ F such that iE3 ◦ g = t−
∑3

i=1 y
(−~ω)
i ◦ ti.

Again, πF ◦ g is not an isomorphism, so πF ◦ g =
∑3

i=1 xi ◦ gi for some
gi : L → O(−~xi). Then πF (g −

∑3
i=1 yi ◦ gi) = 0. Hence there is a map

h : L → O(~ω) such that iF ◦ h = g −
∑3

i=1 yi ◦ gi. Applying iE3 to this
equality we obtain

t = iE3 ◦ iF ◦ h+

3∑
i=1

[y
(−~ω)
i ◦ ti + (iE3 ◦ yi) ◦ gi].

Thus t factors through π = (iE3 ◦ iF , (iE3 ◦ yi), (y
(−~ω)
i ))i=1,2,3.

Moreover, since HomX(O(−~x1),O(−~ω − ~x2)) is non-zero and the spaces
HomX(O(−~ω−~x2), E3) and HomX(O(−~x1), E3) are one-dimensional, we can
factor y1 : O(−~x1) → E3 through y

(−~ω)
2 : O(−~ω − ~x2) → E3. It is easy

to see that the line bundles O(~x3 + ~ω), O(~x2 + ~ω), O(~x1 + 2~ω), O(~x3),
O(~x2), O(~x1 + ~ω) are Hom-orthogonal, which implies minimality of P(E3).
Alternatively, minimality can be deduced from Theorem 3.3.

Case (2, 3, 4). In this case the Auslander–Reiten quiver of vect(X) has
shape ZẼ7. It contains two τ -orbits of line bundles, three τ -orbits of rank-
two bundles, two τ -orbits of rank-three bundles and one τ -orbit of rank-four
bundles. We choose, in addition to the structure sheaf, one member of each
τ -orbit, as indicated in the figure, and also mark the position of τG2:
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◦

��

◦
��

◦

��

◦

��

(~x3)◦

��

◦

•

??

��

E2(~x1−2~x3)•

??

��

•

??

��

•

??

��

•

??

��
•

??

��

E3(~x1−2~x3)•

??

��

•

??

��

•

??

��

•

??

��

•

• // • //

??

��

τXG2• // E4• //

??

��

G2• // • //

??

��

• // • //

??

��

• // • //

??

��
•

??

��

E3•

??

��

•

??

��

•

??

��

•

??

��

•

•

??

��

E2•

??

��

•

??

��

•

??

��

•

??

��
◦

??

◦
(~0)

??

◦

??

◦

??

◦

??

◦
(~x2)

Proposition 3.8. We assume weight type (2, 3, 4) and refer to the no-
tation in the above figure. Then each indecomposable vector bundle of rank
at least two lies in the τ -orbit of exactly one of the vector bundles Ei for
i = 2, 3, 4, Fj = Ej(~x1 − 2~x3) for j = 2, 3, and τXG2, where the subscript
indicates rank. The projective covers of these vector bundles are given in the
table below:

Vector bundle Projective cover

E2 ~0, −~ω − ~x1, −~ω − ~x2, −~ω − ~x3
F2 ~ω, ~x2 − ~x1, −~x2, ~x2 − ~x3
τXG2 ~x2 − 2~x3, −~x2, ~x1 − 2~x2, ~ω − ~x3
E3 ~ω, ~x3 − ~x1, −~x2, ~x2 − ~x1, −~x3, ~x2 − ~x3
F3 2~x3 − ~x2, −~x3, ~ω − ~x3, ~x2 − 2~x3, ~x1 − 3~x3, ~x1 − 2~x2

E4 ~x2 − 2~x3, −~x2, ~x2 − ~x1, ~ω − ~x3, ~ω, ~x3 − ~x1, ~x3 − ~x2, −~x3

Proof. Since Fi = Ei(~x1 − 2~x3) for i = 2, 3 and P(E(~x)) = P(E)(~x),
it suffices to determine the projective covers of E2, E3, E4 and of τXG2. For
the rank two bundles E2 and τXG2 this is an application of Theorem 3.2.
For E3, the proof is similar to the proof of Proposition 3.7. It thus remains
to determine the projective cover of E4 by using Lemma 3.4. For this we
consider the almost split sequence 0 → τXG2 → E4 → G2 → 0. If L
is a line bundle summand of P(G2), then, by stability, µL < µG2, and
Ext1

X(L, τXG2) = DHomX(G2, L) = 0. Similarly, if L′ is a line bundle sum-
mand of P(τXG2), then Ext1

X(G2, L
′) = 0. Therefore, the above sequence

satisfies the assumptions of Lemma 3.4, hence P(E4) = P(τXG2) ⊕P(G2),
as claimed.

Case (2, 3, 5). In this case the Auslander–Reiten quiver of vect(X) has
the form ZẼ8. We have just one τ -orbit of rank r for r = 1, 5, 6, and two
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τ -orbits of rank r for each r = 2, 3, 4.

•
��

F2•

��

•

��

•

��

•

•

??

��

F4•

??

��

•

??

��

•

??

��

•

??

��
• // • //

??

��

G3• // E6• //

??

��

• // • //

??

��

• // • //

??

��

• // •

•

??

��

E5•

??

��

•

??

��

•

??

��

•

??

��
•

??

��

E4•

??

��

•

??

��

•

??

��

•

•

??

��

E3•

??

��

•

??

��

•

??

��

•

??

��
•

��

??

E2•

��

??

•

��

??

•

��

??

•

◦

??

◦
(~0)

??

◦

??

◦

??

◦

??

The marked region is a fundamental domain with respect to the Auslander–
Reiten translation.

Proposition 3.9. We assume weight type (2, 3, 5) and refer to the no-
tation in the above figure. Then each indecomposable bundle of rank ≥ 2 lies
in the Auslander–Reiten orbit of exactly one of the vector bundles Ei, Fj
and Gl, having rank i = 2, 3, 4, 5, 6 (resp. j = 2, 4, l = 3). Moreover, the
projective covers are given in the table below:

Vector bundle Projective cover

E2 ~0, ~x3 − 2~x2, ~x3 − ~x1, ~x2 − ~x1
F2 ~x1 − 3~x3, ~ω − ~x2, −~x3, ~x2 − 3~x3

E3 ~ω, ~x2 − ~x1, −~x3, ~x3 − ~x1, −~x2, ~x3 − 2~x2

G3 ~x1 − 3~x3, ~x2 − ~x1, ~ω − ~x3, ~x2 − 3~x3,−~x2,−2~x3
E4 ~x2 − ~x1, ~ω − 2~x3, ~x2 − 3~x3, −~x2, ~ω, ~x3 − ~x1, ~x3 − ~x2, −~x3
F4 ~x3 − ~x2, −2~x3, −~x3, ~x3 − ~x1, ~x1 − 3~x3, ~ω − ~x2, −~x3, ~x2 − 3~x3

E5 ~x3 − ~x2, −~x3, ~x2 − 3~x3, ~x3 − ~x1, ~ω − ~x2, ~ω − 2~x3, ~x2 − 2~x3,
−~x2, ~x2 − ~x1, ~ω − ~x3

E6 ~x1 − 3~x3, ~x2 − ~x1, ~ω − ~x3, ~x2 − 3~x3, −~x2, −2~x3, ~x2 − 2~x3,
~x3 − ~x2, −~x3, ~ω − ~x3, ~x3 − ~x1, ~ω − ~x2

Proof. In the case of vector bundles of rank 2 and 3 the proof is similar
to that of Proposition 3.7. For the remaining cases we will use Lemma 3.4.

In the case of E4 we consider the exact sequence 0 → τ2
XF2 → E4 →

τ−2
X F2 → 0. It is easy to see that it satisfies the assumptions of Lemma 3.4, i.e.
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Ext1
X(P(τ−2

X F2), τ2
XF2) = DHomX(τXF2,P(F2)) = 0,

Ext1
X(τ−2

X F2, I(τ2
XF2)) = DHomX(τXI(F2), F2) = 0.

Hence P(E4) = P(τ2
XF2) ⊕ P(τ−2

X F2), so the results follow from Theorem
3.2 applied to the extension bundle τ2

XF2 (resp. τ−2
X F2), which is determined

by the pair (O(~x3 − ~x2), ~x3) (resp. (O, ~x3)).
For F4, E5 and E6, we use the exact sequences 0 → τXF2 → F4 →

F2 → 0, 0 → τXG3 → E5 → τ−X F2 → 0 and 0 → G3 → E6 → τ−XG3 → 0,
respectively. It is straightforward to check that these satisfy the conditions
of Lemma 3.4.

Remark 3.10. Later, when calculating matrix factorizations for E6, we
will use two different exact sequences, namely 0 → G3 → E6 → τ−XG3 → 0
and 0 → τXF4 → E6 → τ−X F2 → 0. While both yield the same projective
cover, we will obtain different matrix factorizations, because the two proce-
dures yield matrix factorizations with a different number of zero entries.

We conclude this section with the observation that indecomposable vec-
tor bundles are uniquely determined by their projective covers, provided X
is domestic. This result turns out to be central to determining matrix fac-
torizations for indecomposable vector bundles.

Proposition 3.11. We assume a domestic weight triple (2, a, b). Let E
and F be indecomposable vector bundles. Then E and F are isomorphic if
and only if their projective covers P(E) and P(F ) are isomorphic.

Proof. We may assume that P(E) = P(F ) where E and F have rank at
least two.

The first part of the proof holds for arbitrary weight triples (2, a, b): From
the (distinguished) exact sequence 0 → E(−~x1) → P(E) → E → 0, using
(2.4) we obtain det(P(E)) = 2 det(E)+~c, and moreover rk(P(E)) = 2 rk(E).
Therefore P(E) determines the determinant, degree, rank and slope of E.
In particular, P(E) = P(F ) implies that E and F have the same rank and
the same slope.

Next, we establish the claim separately for the domestic weight triples
(2, 2, n), (2, 3, 3), (2, 3, 4) and (2, 3, 5).

Case (2, 2, n): We refer to the notation of Proposition 3.6. By an ap-
propriate τ -shift, we may assume that the bundles E0, E2, E4, . . . (resp. the
bundles E1, E3, E5, . . .) have the same slope. One checks that the bundles in
each of the two families have distinct systems of line bundle summands in
the projective cover having maximal slope.

Case (2, 3, 3): With the notation of Proposition 3.7, the rank-two
bundles E2, F2 and G2 have the same slope, but different line bundle sum-
mands of their projective cover with maximal slope, namely O, O(~x3 − ~x2)
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and O(2(~x3 − ~x2)), respectively. Since there is a unique τ -orbit of inde-
composable rank-three bundles, each of these bundles is determined by its
slope.

Case (2, 3, 4): We refer to the notation of Proposition 3.8. The rank-two
bundles E2 and E2(~x3 − 2~x1) have the same half-integral slope and belong
to different τ -orbits. They have different line bundle summands of maximal
slope in their respective projective covers, namely O and O(~x3 − 2~x1). The
members from the third τ -orbit of rank-two bundles, in particular T , are
distinguished from members from the other two τ -orbits by their slope which
is integral. In a similar way, the bundles E3 and E3(~x3− 2~x1) have the same
slope, they represent the τ -orbits of rank-three bundles, and have different
line bundle summands of maximal slope in their projective covers, namely
O(~ω) andO(~ω+~x3−2~x1). Finally, there is just one τ -orbit of indecomposable
rank-four bundles.

Case (2, 3, 5): We refer to the notation of Proposition 3.9. Here, the
claim reduces to showing that E2, F2 (analogously E3, F3 and E4, F4) can
be distinguished in terms of their projective covers. To distinguish E2 and F2

we observe that O and O, respectively O(3~ω), are line bundle summands of
their projective covers. Concerning E3 and F3, the line bundle summands O
and O(4~ω) have maximal slopes in their respective projective covers. Finally,
the Auslander–Reiten orbits of E4 and F4 are distinguished by their integral
(resp. half-integral) slopes.

Assuming an arbitrary weight triple, a corresponding result holds true
for indecomposable bundles of rank two. For the proof we refer to [LR].

Proposition 3.12. We assume that X has triple weight type (a, b, c).
Then each indecomposable vector bundle E of rank two is uniquely deter-
mined by its projective cover P(E).

Remark 3.13. Assuming a weighted projective line X = X(a, b, c) of
Euler characteristic χX ≤ 0, that is, assuming X of tubular or wild type,
it is no longer true that each indecomposable vector bundle E is uniquely
determined by P(E). Suppose that the base field k is uncountable and, for
simplicity, that X has weight type (2, a, b). By perpendicular calculus (see
[GL91]) there exists a weighted projective line Y of tubular type and a full
embedding coh(Y) ↪→ coh(X) that preserves the rank. From the tubular fam-
ilies in coh(Y) we then deduce the existence of a one-parameter family (Eα)
of indecomposable vector bundles over X, all having the same positive rank r.
This in turn implies that each projective hull P(Eα) has fixed rank 2r. Since
the grading group L is countable, this leaves only countably many possi-
bilities for the isomorphism classes of P(Eα), forcing many non-isomorphic
Eα’s to have the same projective cover.
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This leads to a modified question, to which the authors do not know the
answer: Assume that E and F are exceptional vector bundles with isomorphic
projective covers P(E) and P(F ). Does this imply that E and F are isomor-
phic? In support for a positive answer, we mention that, for X domestic, each
indecomposable vector bundle is exceptional. Also, because of triple weight
type, all extension bundles are exceptional. Moreover, since by a result of
Hübner [Hüb96] (see [Mel04] for a proof), exceptional vector bundles are
determined by their classes in the Grothendieck group K0X, there exist only
countably many isoclasses of exceptional vector bundles, thus preventing the
contradiction of the above argument.

4. Factorization frame attached to a vector bundle. We assume
a domestic weight triple (2, a, b) = (p1, p2, p3). Then a matrix factorization
for an indecomposable vector bundle E of rank r can be obtained from
its minimal projective resolution by first determining its factorization frame
consisting of a pair of 2r×2r-matrices (see Definition 4.4), and then adjusting
the entries of the factorization frame by suitable scalars.

We now establish the key result of this section. For this, it is conve-
nient to identify the Frobenius categories CML(S) and vect(X) by means
of sheafification CML(S)

∼→ vect(X), M 7→ M̃ . In the same context, by a
matrix factorization (u, v) attached to a vector bundle E without line bun-
dle summands we mean a matrix factorization of f = xp11 + xp22 + xp33 over
T = k[x1, x2, x3] attached to the Cohen–Macaulay module M corresponding
to E. We are going to compare the rows of the commutative diagram

(4.1)

· · · // P0(−~c )
v //

ν
��

P1

ν
��

u // P0

ν
��

π //M // 0

· · · // P̄0(−~c )
v̄ // P̄1

ū // P̄0
π̄ //M // 0

where the upper row is a T -matrix factorization of f for M , π is a T -
projective cover of M , and the lower row is a minimal S-projective reso-
lution of M . The vertical maps and the bar notation stand for reduction
modulo (f).

In the above setting, we fix decompositions of P0 and P1 into indecom-
posable T -projectives, and consider the decompositions for the T -projectives
P0(−n~c ), induced by degree shift, and the corresponding decompositions of
the S-projectives P̄0(−n~c ) and P̄1(−n~c ), induced by reduction modulo (f).
We then say that we have chosen compatible decompositions for (4.1). To
achieve such decompositions, we may alternatively start with decompositions
of P̄0 and P̄1, and then extend them to the remaining members of (4.1) by
degree shift and by taking T -projective covers.
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We say that an element x = xl11 x
l2
2 x

l3
3 , viewed as a member of T or S,

is a monomial with small exponents if 0 ≤ li ≤ pi − 1 for i = 1, 2, 3 and∑3
i=1 li > 0. In particular, x belongs to the graded maximal ideal of T

(respectively S).

Theorem 4.1. We assume the above setting (4.1) for a weighted projec-
tive line X of domestic type, where M is an indecomposable L-graded Cohen–
Macaulay module of rank at least two, attached to the (indecomposable) vector
bundle E on X.

Let ~y0, ~y1 be members of L such that T (~yi) is a T -direct summand of
Pi (i = 0, 1) and, accordingly, S(~yi) is an S-direct summand of P̄i. Then
reduction modulo (f) induces an isomorphism

(4.2) T~y0−~y1 = HomT (T (~y1), T (~y0))
∼=−→ HomS(S(~y1), S(~y0)) = S~y0−~y1 .

Moreover, the Hom-spaces from (4.2) are either both zero, and then ~y1 6≤ ~y0,
or else 0 < δ(~y0 − ~y1) < δ(~c ), and then T~y0−~y1 = kx (and also S~y0−~y1 = kx)
for a monomial x with small exponents.

Proof. Since f belongs to the graded maximal ideal of S, a finitely gener-
ated graded T -module M is zero if and only if M/fM is zero. In particular,
HomT (T (~y1), T (~y0)) = 0 if and only if HomS(S(~y1), S(~y0)) = 0.

Next, we switch to the context of vector bundles, and use the exis-
tence of (distinguished) exact sequences 0 → E(−~x1) → P̄0 → E → 0 and
0→ E(−~c )→ P̄1 → E(−~x1)→ 0, where the P̄0 and P̄1 are projective in the
Frobenius category vect(X). Assume that HomX(O(~y1),O(~y0)) 6= 0. We are
going to show that HomX(O(~y1),O(~y2)) = kx, where x is a small monomial:
If E has slope µE = q, then µE(−~x1) = q − δ(~x1) and µE(−~c ) = q − δ(~c ).
Because X is domestic, all indecomposable vector bundles are stable by
[GL87, Proposition 5.5]. Since P̄1 is the injective hull of E(−~c ), we have
HomX(E(−~c ),O(~y1)) 6= 0, hence q− δ(~c ) < δ(~y1). Since P̄1 is the projective
cover ofE(−~x1), we haveHomX(O(~y1), E(−~x1)) 6= 0, hence δ(~y1) < q−δ(~x1).
Similarly, because P̄0 is the injective hull of E(−~x1) and also the projective
cover of E, we obtain q − δ(~x1) < δ(~y0) < q. Putting things together, we
finally get

q − δ(~c ) < δ(~y1) < q − δ(~x1) < δ(~y0) < q,

and in particular δ(~y0 − ~y1) < δ(~c ). Since HomX(O(~y1),O(~y0)) = S~y1−~y0
we get 0 < δ(~y1 − ~y0) < δ(~c ). We set ~u = ~y0 − ~y1. Since S~y0−~y1 6= 0 by
assumption, we get 0 < ~u and 0 < δ(~u) < δ(~c ). Note that ~u = 0 is not
possible, because δ(~u) > 0. Writing ~y0 − ~y1 in normal form ~y0 − ~y1 =
l1~x1 + l2~x2 + l3~x3 + l~c with 0 ≤ li ≤ pi − 1, we obtain l ≥ 0 from
~y0 − ~y1 > 0. Assuming that l ≥ 1 then yields δ(~y0 − ~y1) ≥ δ(~c ), which
is impossible. Thus l = 0 and S~y0−~y1 = k~x l11 ~x

l2
2 ~x

l3
3 , establishing the last
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assertion. From this it finally follows that the map from (4.2) is an isomor-
phism.

For the corollary below, we keep the notation and assumptions of Theo-
rem 4.1.

Corollary 4.2. We assume compatible decompositions for the members
of (4.1). Then the T -matrix factorization (u, v) of f , associated to E, and
the S-minimal projective resolution (ū, v̄) are represented by the ‘same’ ma-
trix pair (U, V ), whose entries are scalar multiples of monomials with small
exponents, interpreted as elements of T (respectively of S).

The scalar factors from Corollary 4.2, and hence the matrices (U, V ),
are usually difficult to determine. We thus introduce an intermediate con-
cept, called a factorization frame for E. By Theorem 4.1 or Corollary 4.2,
factorization frames always exist for indecomposable bundles, provided we
deal with domestic weight triples. But factorization frames may also exist in
other situations. In particular, extension bundles admit factorization frames,
without any restriction on the weight triple (p1, p2, p3).

Assuming an arbitrary weight triple (a, b, c), Theorem 3.2 provides an
explicit projective cover for extension bundles, and thus for indecomposable
vector bundles of rank two. Hence a result very close to Theorem 4.1 can
be shown for indecomposable Cohen–Macaulay modules of rank two for ar-
bitrary weight triples (a, b, c), by just following the lines of the proof for
Theorem 4.1:

Theorem 4.3. We assume the above setting (4.1) for a weighted projec-
tive line X of type (a, b, c), where M is an indecomposable L-graded Cohen–
Macaulay module of rank two.

Let ~y0, ~y1 be members of L such that T (~yi) is a T -direct summand of
Pi (i = 0, 1) and, accordingly, S(~yi) is an S-direct summand of P̄i. Then
reduction modulo (f) induces an isomorphism

(4.3) T~y0−~y1 = HomT (T (~y1), T (~y0))
∼=→ HomS(S(~y1), S(~y0)) = S~y0−~y1 .

Moreover, the Hom-spaces from (4.3) are either both zero, in which case
~y1 6≤ ~y0, or else 0 < δ(~y0 − ~y1) < δ(~c ), in which case T~y0−~y1 = kx (and also
S~y0−~y1 = kx) for a monomial x with small exponents.

Definition 4.4. We assume a domestic weight triple. A factorization
frame (U, V ) for an indecomposable vector bundle E of rank r ≥ 2 is a
pair of 2r × 2r-matrices over T , obtained by Theorem 4.3 from line bundle
decompositions

(4.4) P̄0 =

2r⊕
j=1

O(~zj), P̄1 =

2r⊕
i=1

O(~yi), P̄0(−~c ) =

2r⊕
j=1

O(~zj − ~c )
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of the projectives from a minimal projective resolution of E, as follows: The
(i, j)-entry of U is defined by:

(a) If HomX(O(~yi),O(~zj)) = 0, then the entry is zero.
(b) Otherwise, HomX(O(~yi),O(~zj)) = S~zj−~yi = kxl11 x

l2
2 x

l3
3 with 0 ≤ li ≤

(pi − 1). Then the (i, j)-entry is given by the monomial xl11 x
l2
2 x

l3
3 .

The matrix V is defined in a similar fashion from the decompositions of
P0(−~c ) and P1.

By Definition 4.4, a factorization frame for E depends on the line bun-
dle decompositions for the terms of a minimal projective resolution of E.
However, assuming domestic type, for rk(E) ≤ 5 the factorization frame
attached to E is unique by Proposition 4.6. We note also that usually a
factorization frame (U, V ) for E will not satisfy the matrix factorization
property UV = f1 = V U . However, by Corollary 4.2, each factorization
frame for E can be specialized to a matrix factorization for E:

Lemma 4.5. We assume domestic type and that E is indecomposable
of rank at least two. Then each factorization frame (U, V ) for E can be
specialized to a T -matrix factorization for f , representing E, by modifying
the entries of the factorization frame by (possibly zero) scalars in such a
way that the resulting matrices u, v satisfy uv = f1 = vu. Conversely, each
matrix factorization (u, v) for f , representing E, arises this way.

Let E be an indecomposable vector bundle of rank ≥ 2 for domestic
weight type. Our next result implies that, with the single exception of the
members E from the single τ -orbit of indecomposable rank-six bundles for
weight type (2, 3, 5), the decomposition of the projective cover P(E) into
line bundles is multiplicity-free.

Proposition 4.6. Let X be of domestic type and let E be an indecom-
posable vector bundle of rank r ≥ 2, with projective cover P(E) =

⊕2r
i=1 Li.

If rk(E) ≤ 5, then L1, . . . , L2r are pairwise non-isomorphic line bundles. If
rk(E) = 6, and then X of weight type (2, 3, 5), there are exactly 11 non-
isomorphic line bundles among L1, . . . , L12.

Proof. Case-by-case analysis, based on Propositions 3.6–3.9.

Of course, not every matrix factorization (u, v), obtained from a factor-
ization frame (U, V ), attached to an indecomposable vector bundle E by
specialization, will satisfy cok(u, v) = E: see Example 4.12, where the ma-
trices u and v contain too many zero entries. We thus investigate situations
when the modified entries of a factorization frame are not allowed to be zero.
For this the following general result from [KLM13, Prop. 3.8] will be useful.
Here, we say that a map h : E → L′ is a component map of the injective
hull jE : E → I(E) if L′ is a line bundle and E = L′ ⊕ E′ where h is the
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restriction of jE to L′. Component maps of projective covers are defined in
a similar way.

Proposition 4.7. Let X be a weighted projective line of triple weight
type. Let E be a vector bundle and L, L′ be line bundles.

(i) If h : E → L′ is a component map of the injective hull jE : E → I(E),
then h is an epimorphism in coh(X).

(ii) If l : L→E is a component map of the projective cover πE : P(E)→E,
then l is a monomorphism in coh(X), and moreover the cokernel
of l, formed in coh(X), is a vector bundle.

Proof. Property (i) immediately follows from the explicit description of
the injective hull in Theorem 3.2, while the proof of (ii) uses the case-by-case
description of projective covers from Section 3.

As an immediate consequence we get

Corollary 4.8. Let X be a weighted projective line of triple weight type.
For an exceptional vector bundle E we have

(i) Ext1
X(E,I(E)) = 0,

(ii) Ext1
X(P(E), E) = 0,

(iii) Ext1
X(P(E), I(E)) = 0.

Proof. For (i), let L′ be a line bundle summand of I(E) and v : E → L′

be a corresponding component map of the injective hull jE : E → I(E).
By Proposition 4.7, v : E → L′ is an epimorphism. Thus, by heredity of
coh(X), the condition Ext1

X(E,E) = 0 implies that Ext1
X(E,L′) = 0. This

happens for each line bundle summand L′ of I(E), therefore Ext1
X(E,I(E))

= 0. The proof of (ii) is dual. Concerning (iii), we argue as before: Since v
is an epimorphism, condition (ii) implies Ext1

X(P(E), L′) = 0 for each line
bundle summand L′ of I(E), and (iii) follows.

Lemma 4.9. Let X be a weighted projective line of triple weight type and
let E be an exceptional vector bundle. Let πE : P(E) → E (respectively
jE : E → I(E)) be the projective cover (respectively the injective hull) of E.
Let L (respectively L′) be a line bundle summand of the projective cover P(E)
(respectively the injective hull I(E)), and let u : L → E (respectively v :
E → L′) be a corresponding component map of πE : P(E)→ E (respectively
jE : E → I(E)). Assume that HomX(L,E) = k and HomX(E,L′) = k. Then
vu is the zero map if and only if HomX(L,L′) = 0.

Proof. Assume, for contradiction, that HomX(L,L′) 6= 0 but vu = 0.
By Proposition 4.7 the map v : E → L′ is an epimorphism. By heredity of
coh(X), the condition Ext1

X(E,E) = 0 then implies that Ext1
X(E,L′) = 0.
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Next, we apply the functor HomX(−, L′) to the non-split exact sequence
(?) 0 → L

u−→ E
p−→ F → 0, yielding exactness of HomX(E,L′)

−◦u−−→
HomX(L,L′) → Ext1

X(F,L′) → Ext1
X(E,L′) = 0. Because HomX(E,L′) = k

and v◦u = 0, the map −◦u : HomX(E,L′)→ HomX(L,L′) is zero. Therefore
Ext1

X(F,L′) ∼= HomX(L,L′) 6= 0 by assumption. On the other hand, applying
HomX(−, E) to (?), we get exactness of 0→ HomX(F,E)→ HomX(E,E)→
HomX(L,E) → Ext1

X(F,E) → Ext1
X(E,E) = 0. Since, by assumption,

HomX(E,E) = k = HomX(L,E), we deduce that dim HomX(F,E) =
dim Ext1

X(F,E), and we are going to show that both terms vanish.
Assuming HomX(F,E) 6= 0, we compose the epimorphism p with a non-

zero map from F to E to obtain an endomorphism of E that is neither zero
nor an isomorphism, in obvious contradiction to Hom(E,E) = k. Hence
HomX(F,E) = 0 and then Ext1

X(F,E) = 0. Because v : E → L′ is an epimor-
phism, the condition Ext1

X(F,E) = 0 finally implies that Ext1
X(F,L′) = 0,

contrary to what was established before.

The following consequence yields certain limitations for specializing fac-
torization frames to matrix factorizations. We adhere to the notation of
Definition 4.4 and further refer to Lemma 4.5.

Corollary 4.10. Assume a matrix factorization (u, v) of f over T that
is attached to E, is obtained from a factorization frame (U, V ) for E by
specialization. Assume, in particular, that uij = λijUij. If Hom(O(~yi), E) =
k = Hom(E,O(~zj)), then the scalar λij must be non-zero. A similar result
holds for the specialization of V to v.

In the general situation the dimension of the homomorphism space be-
tween E and a line bundle summand of P(E) or I(E) can by greater than
one. We have more precise information for indecomposable vector bundles
of rank 2 and 3:

Lemma 4.11.

(a) Assuming X of arbitrary weight triple, let L (respectively L′) be a di-
rect summand of the projective cover (respectively the injective hull)
of an extension bundle E. Then HomX(L,E) = k (respectively
HomX(E,L′) = k).

(b) Assuming X of domestic weight type, let L (respectively L′) be a direct
summand of the projective cover (respectively the injective hull) of an
indecomposable rank 3 bundle E. Then HomX(L,E) = k (respectively
HomX(E,L′) = k).

Proof. We prove (a); the proof of (b) is similar. Let E be an extension
bundle on X, thus E is the middle term of an exact sequence 0 → L̄(~ω) →
E → L̄(~x)→ 0 for some line bundle L̄ and an element ~x = l1~x1 + l2~x2 + l3~x3
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such that 0 ≤ li ≤ pi − 2 for i = 1, 2, 3. It follows from Theorem 3.2
that each direct summand L of P(E) is L̄(~ω) or L̄(~x − (1 + li~xi)) for
i = 1, 2, 3. Therefore Ext1

X(L′, L̄(~ω)) = HomX(L̄, L′) = 0. Since the di-
rect summands of the projective cover of E are HomX-orthogonal, we con-
clude that dim HomX(L′, E) = dim HomX(L′, L̄(~ω)) = 1 for L = L̄(~ω), and
dim HomX(L′, L̄(~x)) = 1 for L 6= L̄(~ω).

As the following example shows, achieving the condition uv = f1 = vu
by specialization of a factorization frame for E is not sufficient to obtain a
matrix factorization representing E.

Example 4.12. Let X be a weighted projective line of type (2, 3, 4).
We consider the almost-split sequence 0 → τG2 → E4 → G2 → 0 from
Proposition 3.8. This sequence satisfies the assumptions of Lemma 3.5. Hence
the factorization frame for E4 has the shape

UE4 =

[
uτG2 b

0 uG2

]
, VE4 =

[
vτG2 b

0 vG2

]
.

If we choose scalars such that b = 0, and uτG2 , vτG2 (resp. uG2 , vG2) are
matrix factorization for τG2 (respectively G2), then we obtain a matrix
factorization for τG2 ⊕G2, not for E4.

In checking the indecomposability of a matrix factorization obtained by
specializing matrix frames for bundles of rank two and three, the following
observation will be helpful.

Observation 4.13. Let X have a domestic type and E be an indecom-
posable vector bundle of rank 2 or 3. Then the line bundle summands of
P(E) are pairwise Hom-orthogonal.

Proof. For rank two this is a general fact (see Theorem 3.2). For rank
three, this follows by inspection of the projective covers for domestic weight
triples.

5. Matrix factorizations. Throughout this section, we will freely switch
from the notation (x1, x2, x3) to (x, y, z), whenever this is preferable for
typographical reasons.

This section presents explicit matrix factorizations for the following cases.
Keeping the weight triple (a, b, c) of integers greater than or equal to 2, we
first present a general result on the matrix factorizations of the L-graded
triangle singularity f = xa+yb+zc for indecomposable bundles of rank two.
Next, we restrict to the weight triple (2, a, b), where we obtain symmetric
matrix factorizations for indecomposable vector bundles of rank two.

For the second part of the section we restrict to weight triples of do-
mestic case, that is, to the weight triples (2, 2, n), (2, 3, 3), (2, 3, 4) and
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(2, 3, 5). Here, we determine symmetric matrix factorizations for each in-
decomposable vector bundle (equivalently, each L-graded indecomposable
Cohen–Macaulay module) of rank ≥ 2, where for rank two we use the gen-
eral result for extension bundles. We emphasize that our methods work over
any characteristic, yielding matrices whose entries are {0,±1} multiples of
monomials with small exponents. Still restricting to domestic weight types,
we note that the concepts of simple singularities and triangle singularities, as
studied in [KST07], [LdlP11], respectively [KLM13], agree exactly for weight
type (2, 3, 5). Due to different approaches, the resulting matrix factorizations
for f = x2 + y3 + z5 are different.

General results. We recall that the group L acts on coh(X), and on
related mathematical objects like T = k[x1, x2, x3], S = T/(f), CML(S)
and vect(X), by degree shift. The next observation largely simplifies the
determination of explicit matrix factorizations.

Lemma 5.1. We assume that X has triple weight type. Let E be a vector
bundle admitting a matrix factorization (u, v). Then for each ~x in L, also
E(~x) admits the matrix factorization (u, v). In particular, all members of a
τ -orbit in vect(X) admit matrix factorizations by the same matrices.

Proof. If M is the L-graded Cohen–Macaulay S-module corresponding
to E, and P0

u−→ P1
v−→ P0 →M → 0 is the start of a 2-periodic minimal pro-

jective A-resolution for M , then application of the degree shift with ~x yields
the start P0(~x)

u−→ P1(~x)
v−→ P0(~x) → M(~x) → 0 of a 2-periodic minimal

projective A-resolution for M(~x), just keeping the matrices u and v.

Assume that X is a weighted projective line of triple weight type (a, b, c),
not necessarily domestic. We recall from [KLM13, Theorem 4.2] that each
indecomposable vector bundle E of rank two is an extension bundle, that is,
it is the middle term EL〈~x〉 of ‘the’ non-split exact sequence 0 → L(~ω) →
E → L(~x)→ 0 for some line bundle L and some ~0 ≤ ~x ≤ ~δ, where ~δ = ~c+2~ω.
By Lemma 5.1 we obtain matrix factorizations (u~x, v~x) for EL〈~x〉 where the
matrices u~x and v~x are independent of L. To see this, one uses formula (3.2).
In the following, we are going to construct matrix factorizations for many
vector bundles E (or Cohen–Macaulay modules M). In order to describe
such a matrix factorization uniquely, we list the projective cover P(E) of
E (or M) together with the matrix pair (u, v) of the factorization. If we
represent P(E) as a direct sum of line bundles O(~yj), j = 1, . . . , s, then the
triple notation (u, v,P(E)), or equivalently (u, v, (~yj)), determines E (orM)
uniquely, up to isomorphism.

Proposition 5.2. Let X be a weighted projective line of triple weight
type (a, b, c). Then the extension bundle E = EL〈~x〉, where ~x =

∑3
i=1 li~xi and

~0 ≤ ~x ≤ ~δ, admits the matrix factorization (u~x, v~x, (~ω, ~x− (1 + li~xi))i=1,2,3),
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where

u~x =


0 x(1+l1) y(1+l2) z(1+l3)

x(1+l1) 0 zc−(1+l3) −yb−(1+l2)

y(1+l2) −zc−(1+l3) 0 xa−(1+l1)

z(1+l3) yb−(1+l2) −xa−(1+l1) 0

 ,

v~x =


0 xa−(1+l1) yb−(1+l2) zc−(1+l3)

xa−(1+l1) 0 −z(1+l3) y(1+l2)

yb−(1+l2) z(1+l3) 0 −x(1+l1)

zc−(1+l3) −y(1+l2) x(1+l1) 0

 .

Proof. From Theorem 3.2, the projective cover of the extension bundle
EL〈~x〉 is given by P(EL〈~x〉) = L(~ω)⊕

⊕3
i=1 L(~x− (1 + li)~xi).

The corresponding factorization frame for EL〈~x〉 has the shape

U~x =


0 x(1+l1) y(1+l2) z(1+l3)

x(1+l1) 0 zc−(1+l3) yb−(1+l2)

y(1+l2) zc−(1+l3) 0 xa−(1+l1)

z(1+l3) yb−(1+l2) xa−(1+l1) 0

 ,

V~x =


0 xa−(1+l1) yb−(1+l2) zc−(1+l3)

xa−(1+l1) 0 z(1+l3) y(1+l2)

yb−(1+l2) z(1+l3) 0 x(1+l1)

zc−(1+l3) y(1+l2) x(1+l1) 0

 .
From Lemmas 4.10 and 4.11 we need to choose non-zero scalars such that
u~xv~x = f 1 = v~xu~x and (u~x, v~x) is indecomposable. By Theorem 3.2 the line
bundle summands of the projective cover of EL〈~x〉 are Hom-orthogonal; it is
then easy to check that the above choice of scalars yields an indecomposable
matrix factorization. That we get, indeed, a matrix factorization attached
to E then follows from Proposition 3.11.

We next assume weight type (2, a, b) and show that each extension bun-
dle E = EL〈~x〉 admits a symmetric matrix factorization. We recall from
Theorem 3.3 that the suspension functor [1] for vect(X) is induced by the
degree shift E 7→ E(~x1). The minimal projective resolution of E has the
form

(5.1) P(E)(−~c )
v̄=ū(−~x1)−−−−−−→ P(E)(−~x1)

ū−→ P(E)→ E → 0.
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Interpreting the above sequence on the level of S-modules shows that the
symmetry condition v̄ = ū(−~x1) is satisfied over S = T/(f). It remains to
lift the maps ū and v̄ to T -linear maps u and v such that v = u(−~x1), and
moreover the matrix factorization identity u(−~x1)u = f1 holds.

Proposition 5.3. Let X be a weighted projective line of triple weight
type (2, a, b). Then each extension bundle E = EL〈~x〉, where ~x = l2~x2 + l3~x3

and 0 ≤ l2 ≤ a− 2, 0 ≤ l3 ≤ b− 2, admits a symmetric matrix factorization
(u~x, v~x, (~ω, ~x− ~x1, l3~x3 − ~x2, l2~x2 − ~x3)) of f = x2 + ya + zb, where

u~x = v~x =


x 0 −zb−l3−1 ya−l2−1

0 x yl2+1 zl3+1

−zl3+1 ya−l2−1 −x 0

yl2+1 zb−l3−1 0 −x

 .
Proof. We fix a decomposition of P(E) into line bundles that is trans-

ferred to the other terms by degree shifts with −~x1 and −~c. We then obtain a
matrix factorization (u~x, v~x) such that u~x and v~x = u~x(−~x1) are represented
by the same matrix. Defining the above specialization u~x of the factorization
frame for E, we achieve the matrix factorization condition u2

~x = f1 over T .
Using arguments as before, it is again easy to check that this matrix factor-
ization has a trivial endomorphism algebra. Hence it is indecomposable, and
so by Proposition 3.12 it represents E.

The domestic case. The main result of this section, and actually the
main result of this paper, concerns the domestic case, necessarily of type
(2, a, b), where, for each indecomposable vector bundle of rank at least two,
we determine explicitly a symmetric matrix factorization.

Theorem 5.4. We assume a triangle singularity f = x2 + ya + zb of
domestic type. For each indecomposable bundle E of rank at least two, we
obtain a symmetric matrix factorization u2 = f1 of f representing E. The
matrix entries of u are scalar multiples of monomials in x, y, z with small
exponents. Moreover, the scalars may be taken from {0,±1}.

Proof. Interpreting the minimal projective resolution (5.1) as a sequence
of L-graded Cohen–Macaulay modules over S, we lift it to a matrix factor-
ization of f over T , thus obtaining a commutative diagram

(5.2)

· · · // P0(−~c )
v //

ν
��

P0(−~x1)

ν
��

u // P0

ν
��

π //M // 0

· · · // P̄0(−~c )
v̄=ū(−~x1) // P̄0(−~x1)

ū // P̄0
π̄ //M // 0

First we are going to show that the matrix factorization (u, v) is symmetric,
that is, v = u(−~x1). Now, reduction modulo (f) sends v and u(−~x1) to
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the same map v̄. Since X has domestic type, and by invoking compatible
decompositions of the Pi and P̄i into indecomposable projectives, Theorem
4.3 shows that v = u(−~x1). Moreover, by the same theorem, the matrix
entries (with respect to the chosen decomposition) are scalar multiples of
monomials with small exponents.

That the scalars, actually, can be chosen from among 0 and ±1 follows
through a case-by-case analysis from the following propositions.

For the rest of this section, we derive explicit matrix factorizations for all
indecomposable vector bundles of rank at least two. We recall (see Lemma
5.1) that a single matrix factorization is sufficient to represent all members
of a fixed Auslander–Reiten orbit.

The triangle singularity x2 +y2 +zn (n ≥ 2). Here, the projective covers
are given by Proposition 3.6. Since for type (2, 2, n) all indecomposable vector
bundles that are not line bundles have rank two, the corresponding matrix
factorizations are a special case of Proposition 5.3.

Proposition 5.5. Let Ei denote the extension bundle EL〈i~x3〉 for
i = 0, . . . , n− 2. Then the bundle Ei yields a symmetric matrix factorization
(uEi , vEi ,P(Ei)) of x2 + y2 + zn as follows:

uEi = vEi =


x 0 −zn−i−1 y

0 x y zi+1

−zi+1 y −x 0

y zn−i−1 0 −x


for i = 0, . . . , n− 2.

The triangle singularity x2 + y3 + z3. We will use the projective covers
described in Proposition 3.7 and use the notation from the Auslander–Reiten
quiver of type (2, 3, 3) depicted there.

Proposition 5.6. For the singularity x2 + y3 + z3 we obtain the sym-
metric matrix factorizations (u2, v2,P(E2)), (u2, v2,P(F2)), (u2, v2,P(G2)),
(u3, v3,P(E3)), where

u2 = v2 =


x 0 −z2 y2

0 x y z

−z y2 −x 0

y z2 0 −x

 , u3 = v3 =



x yz 0 y2 0 −z2

0 −x z 0 −y 0

0 z2 x yz 0 y2

y 0 0 −x z 0

0 −y2 0 z2 x yz

−z 0 y 0 0 −x


.
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Proof. The vector bundles E2, F2, G2 are extension bundles determined
by the pairs (O(−~ω),~0), (O(~x2 + ~ω),~0), (O(~x3 + ~ω),~0), respectively. There-
fore the claim for those bundles results from Proposition 5.3. Concerning
the vector bundle E3, it is first checked that u3v3 = f1 = v3u3. Since,
moreover, the direct summands of P(E3) are mutually Hom-orthogonal, it
is easy to check that the matrix factorization (u3, v3) is indecomposable. By
Proposition 3.11 it then represents the vector bundle in question.

The triangle singularity x2 +y3 +z4. For weight type (2, 3, 4), each inde-
composable vector bundle is of rank 1, 2, 3 or 4. As in Proposition 5.3, and
using the notation introduced there, we only need to determine matrix factor-
izations for the vector bundles E2, E3, E4 and F2, since by symmetry Ei and
Ei(~x1−2~x3) will yield the same matrix pair. Moreover, matrix factorizations
for the rank-two bundles E2 and G2 are already given by Proposition 5.3.
We thus obtain:

Proposition 5.7. For the singularity x2+y3+z4 we obtain the symmet-
ric matrix factorizations (uEi , vEi ,P(Ei)) for i = 2, 3, 4, (uEi , vEi ,P(Ei(~x1−
2~x3))) for i = 2, 3, (uG2 , vG2 ,P(G2)), where

uE2 = vE2 =


x 0 −z3 y2

0 x y z

−z y2 −x 0

y z3 0 −x

 ,

uE3 = vE3 =



x 0 z3 0 −y2 −yz2

0 x yz 0 z2 −y2

z 0 −x y 0 0

0 0 y2 x yz z3

−y z2 0 0 −x 0

0 −y 0 z 0 −x


,

uE4 = vE4 =



x 0 −z2 y2 0 −yz 0 0

0 x y z2 z 0 0 0

−z2 y2 −x 0 0 0 0 −yz
y z2 0 −x 0 0 z 0

0 0 0 0 −x 0 −z2 y2

0 0 0 0 0 −x y z2

0 0 0 0 −z2 y2 x 0

0 0 0 0 y z2 0 x


,
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uG2 = vG2 =


x 0 −z y2

0 x y z2

−z2 y2 −x 0

y z2 0 −x

 .

Proof. It easy to check that the above matrices satisfy the matrix equa-
tion u2 = f1. By Proposition 3.11, it remains to prove the indecomposability
of those matrix factorizations by showing that their endomorphism rings are
trivial. For the indecomposable vector bundles of rank two and three, the
indecomposability follows easily, since the indecomposable direct summands
of their projective covers are Hom-orthogonal. It remains to check indecom-
posability for (uE4 , vE4), where

uE4 = vE4 =

[
uτXT B

0 uT

]
,

by using the explicit form of the projective cover of E4 by means of Propo-
sition 3.8. The same argument yields the shape of an endomorphism (K,H)
for (uE4 , vE4):

H =

[
H1 0

H3 H4

]
=



f1 0 0 0 0 0 0 0

0 f2 0 0 0 0 0 0

0 0 f3 0 0 0 0 0

0 0 0 f4 0 0 0 0

0 0 0 f5,4z f5 0 0 0

0 0 0 0 0 f6 0 0

0 f7,2z 0 0 0 0 f7 0

0 0 0 0 0 0 0 f8


,

K =

[
K1 0

K3 K4

]
=



g1 0 0 0 0 0 0 0

0 g2 0 0 0 0 0 0

0 0 g3 0 0 0 0 0

0 0 0 g4 0 0 0 0

0 0 0 g5,4z g5 0 0 0

0 0 0 0 0 g6 0 0

0 g7,2z 0 0 0 0 g7 0

0 0 0 0 0 0 0 g8


.
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It follows that HuE4 = uE4K. Now, in block matrix form we have

0 =

[
H1 0

H3 H4

][
uτXT B

0 uT

]
−

[
uτXT B

0 uT

][
K1 0

K3 K4

]

=

[
H1uτXT − uτXTK1 H1B −BK4

H3uτXT − uTK3 H3B +H4uT − uTK4

]
,

and we deduce that (K1, H1) is an endomorphism for (uτXT , vτXT ). Therefore

H1 = K1 = λ14.

Moreover

0 = H3uτXT − uTK3

=


yzf5,4 z3f5,4 + z3g7,2 0 −xzf5,4 + xzg5,4

0 −yzg7,2 0 0

0 xzf7,2 − xzg7,2 yzf7,2 z3f7,2 + z3g5,4

0 0 0 −yzg5,4

 .
Thus K3 = H3 = 0, hence (K4, H4) is an endomorphism for (uT , vT ), and
from the indecomposability of (uT , vT ) we get

H4 = K4 = µ14.

The equation H1B = BK4 implies that λ = µ. Therefore (uE4 , vE4) is inde-
composable, and the claim follows from Proposition 3.11.

The triangle singularity x2 + y3 + z5. In this case, each indecomposable
vector bundle on X is of rank m, 1 ≤ m ≤ 6, and there is a single τX-orbit
of vector bundles of rank 5, and a single one of rank 6.

For a representative system of indecomposable vector bundles E2, E3, . . . ,
E6, F2, F4 and G3 of rank at least two, we use the choices and notation of
Section 3.

Proposition 5.8. For the singularity f = x2 + y3 + z5 we obtain eight
matrix factorizations: (uE2 , vE2 ,P(E2)), . . . , (uE6 , vE6 ,P(E6)), and (uF2 ,
vF2 ,P(F2)), (uF4 , vF4 ,P(F4)), and (uG3 , vG3 ,P(G3)), where

uE2 = vE2 =


x 0 −z4 y2

0 x y z

−z y2 −x 0

y z4 0 −x

 ,
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uE3 = vE3 =



x 0 −y2 0 z4 −yz3

0 x yz 0 y2 z4

−y 0 −x z3 0 0

0 0 z2 x yz −y2

z y 0 0 −x 0

0 z 0 −y 0 −x


,

uE4 = vE4 =



x 0 z3 y2 0 0 0 yz

0 x −y z2 0 0 z 0

z2 −y2 −x 0 0 yz 0 0

y z3 0 −x z 0 0 0

0 0 0 0 x 0 −z3 −y2

0 0 0 0 0 x y −z2

0 0 0 0 −z2 y2 −x 0

0 0 0 0 −y −z3 0 −x


,

uE5 = vE5 =



x 0 0 y2 yz2 z4 0 0 0 −z3

0 x 0 −z3 y2 yz2 0 0 0 −yz
0 0 x −yz −z3 y2 0 0 z2 0

y −z2 0 −x 0 0 0 0 0 0

0 y −z2 0 −x 0 z 0 0 0

z 0 y 0 0 −x 0 z2 0 0

0 0 0 0 0 0 x 0 z3 y2

0 0 0 0 0 0 0 x −y z2

0 0 0 0 0 0 z2 −y2 −x 0

0 0 0 0 0 0 y z3 0 −x


,

uE6 = vE6 =



x 0 0 y2 yz2 z4 0 −yz 0 0 0 0

0 x 0 −z3 y2 yz2 z2 0 0 0 0 0

0 0 x −yz −z3 y2 y 0 0 0 0 0

y −z2 0 −x 0 0 0 0 0 0 yz z3

0 y −z2 0 −x 0 0 0 0 0 0 0

z 0 y 0 0 −x 0 0 0 −y 0 0

0 0 0 0 0 0 −x 0 0 y2 yz2 z4

0 0 0 0 0 0 0 −x 0 −z3 y2 yz2

0 0 0 0 0 0 0 0 −x −yz −z3 y2

0 0 0 0 0 0 y −z2 0 x 0 0

0 0 0 0 0 0 0 y −z2 0 x 0

0 0 0 0 0 0 z 0 y 0 0 x



,
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uF2 = vF2 =


x 0 −z3 y2

0 x y z2

−z2 y2 −x 0

y z3 0 −x

 ,

uF4 = vF4 =



x 0 z3 y2 0 yz2 0 0

0 x −y z2 z 0 0 0

z2 −y2 −x 0 0 0 0 yz

y z3 0 −x 0 0 z2 0

0 0 0 0 −x 0 −z3 y2

0 0 0 0 0 −x −y −z2

0 0 0 0 −z2 −y2 x 0

0 0 0 0 y −z3 0 x


,

uG3 = vG3 =



x 0 0 y2 yz2 z4

0 x 0 −z3 y2 yz2

0 0 x −yz −z3 y2

y −z2 0 −x 0 0

0 y −z2 0 −x 0

z 0 y 0 0 −x


.

Proof. Similarly to the case (2, 3, 4) we check that uv = f1 = vu and
verify that these matrix factorizations are indecomposable. The case of rank-
two bundles is covered by Proposition 5.3. The matrix factorizations for
the rank-three bundles E3 and F3 are verified following the arguments of
Proposition 5.7. Concerning the remaining vector bundles, we determine the
pairs (uEi , vEi) for i = 4, 5, 6 and (uFi , vFi) for i = 4 by specialization of
factorization frames coming from distinguished exact sequences by means
of Proposition 3.9. In particular, for (uE4 , vE4), (uE5 , vE5), (uE6 , vE6) and
(uF4 , vF4), we use the exact sequences 0 → τ2

XF2 → E4 → τ−2
X F2 → 0,

0 → τXG3 → E5 → τ−X F2 → 0, 0 → G3 → E6 → τ−XG3 → 0 and 0 →
τXF2 → F4 → F2 → 0.

Remark 5.9. Observe that 0 → τXF4 → E6 → τ−X F2 → 0 is a dis-
tinguished exact sequence, thus satisfying the assumptions of Lemma 3.5.
Using the resulting direct decomposition P(E6) = P(τF4) ⊕ P(τ−F2), we
get another—essentially different—pair of matrices, also yielding a matrix
factorization of E6:
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u′E6
=v′E6

=



x 0 z3 y2 0 yz2 0 0 0 0 0 −z3

0 x −y z2 z 0 0 0 0 0 0 y

z2 −y2 −x 0 0 0 0 yz y z3 0 0

y z3 0 −x 0 0 z2 0 0 0 0 0

0 0 0 0 −x 0 −z3 y2 0 0 0 0

0 0 0 0 0 −x −y −z2 0 0 0 0

0 0 0 0 −z2 −y2 x 0 0 0 0 0

0 0 0 0 y −z3 0 x 0 0 0 0

0 0 0 0 0 0 0 0 x 0 z3 y2

0 0 0 0 0 0 0 0 0 x −y z2

0 0 0 0 0 0 0 0 z2 −y2 −x 0

0 0 0 0 0 0 0 0 y z3 0 −x



.

In particular, the numbers of zero entries differ for both matrix factorizations.

Remark 5.10. If we compare our matrix factorizations for E6 with the
matrix factorization obtained in [KST07], we also see that they are essentially
different, since for one matrix factorization there appear monomial entries z4,
for the other one there do not.

6. Appendix: Tables of projective covers. The figures of this section
yield compact visual information on the projective covers of indecomposable
vector bundles of rank at least two. Our figures may be especially useful for
specialists from the representation theory of finite-dimensional algebras in-
vestigating the related situation in preprojective, or preinjective, components
for tame concealed quivers. We note that, in the representation-theoretic
context, the line bundle notation O(~x), reduced in the figures to (~x), is not
established, so the given positions in the mesh category of the associated ex-
tended Dynkin quiver should be useful. The names Ei, Fj and Gl for selected
vector bundles are those from Section 3.

Weight type (2, 2, n).

(~x3+~u)
•
•

(−~ω+~u)

E

(~x3)
•

(−~ω)
•

•
(~x1+~ω)

•
(~x2+~ω)

E

(~x3)
•

(−~ω)
•

n even n odd

Fig. 1. (2, 2, n): Projective cover of E = E〈i~x3〉, where ~u = ~x1 − ~x2
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Weight type (2, 3, 3). The projective covers of the ‘remaining’ inde-
composable vector bundles are obtained by applying twice the rotation X 7→
X(~x2 − ~x3) around the central axis.

(~x3+3~ω)
•(~x3+4~ω)

•

E3

•
(~ω)

•
(~x2+3~ω)•

(2~ω)
•

(~x2+4~ω)

(~x2−~x3)
•

(−~x2)
• F2

•
(~ω)

•
(~x2−~x1)

Fig. 2. (2, 3, 3): Projective cover of F2 and E3

Weight type (2, 3, 4). The next figure yields the projective covers for
the indecomposable vector bundles E2, E3, E4 and G2. For the projective
cover of E4 one has to combine the projective covers of G2 and τG2. By
means of reflection in the central horizontal axis X 7→ X(~x1 − 2~x3) one
obtains the projective covers for the ‘missing’ vector bundles E2(~x1 − 2~x3)
and E3(~x1 − 2~x3).

(−~x1)
•

(−~x3)
•

E2

•
(−~x2)

•
(~ω)

(~x2−~x3)
•

(−~x3)
•

(~x2−~x1)
•

E3◦

•
(−~x2)

•
(~x3−~x1)

•
(~ω)

(~x3+7~ω)

F
(−~x3)

�
(~x2−~x1)

F
(~x3−~x2)

�

τG2
F

E4◦
G2
�

F
(−~x2)

�
(~x3−~x1)

F
(~x2−2~x3)

�
(~ω)

Fig. 3. (2, 3, 4): Projective covers for E2, E3, E4, G2 and τG2
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Here and below, by ? (resp. �) we have marked the line bundle summands
of the projective covers of τG2 (resp. G2); together they form the projective
cover of E4.

Weight type (2, 3, 5).

E2◦
•

(~x2−3~ω)
•

(−~x2)
•

(−~x3)
•

(~ω)

E3◦

•
(~x3−2~x2)

•
(−~x2)

•
(~x3−~x1)

•
(−~x3)

•
(~x2−~x1)

•
(~ω)

E4◦

•
(~ω−2~x3)

•
(−~x2)

•
(~x3−~x1)

•
(~x2−3~x3)

•
(−~x3)

•
(~x2−~x1)

•
(~x3−~x2)

•
(~ω)

E5◦

•
(~ω−2~x3)

•
(~ω−~x2)

(−~x2)
• •

(~x3−~x1)

(~x2−3~x3)
• •

(~ω−~x3)

(−~x3)
• •

(~x2−~x1)

(~x3−~x2)
• •

(~x1−3~x3)

G3
�
E6◦
τXG3
F

F
(−2~x3)

(~ω−~x2)

�
F

(−~x2)

(~x3−~x1)

�
F

(~x2−3~x3)

F
(~ω−~x3)

�
F

(−~x3)

(~x2−~x1)

�
F

(~x3−~x2)

(~x1−3~x3)

�
F

(~x1−3~x3)

F2◦

•
(~ω−~x2)

•
(~x2−3~x3)

•
(−~x3)

•
(~x3−~x2)

Fig. 4 (2, 3, 5): Projective covers for E2, E3, E4, E5, E6, F2, F4 and G3 (continued next page)
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F4◦

•
(−2~x3)

•
(~ω−~x2)

•
(~x3−~x1)

•
(~x2−3~x3)

•
(~ω−~x3)

•
(−~x3)

•
(~x3−~x1)

•
(~x3−~x2)

G3◦

•
(−2~x3)

•
(−~x2)

•
(~x2−3~x3)

•
(~ω−~x3)

•
(~x2−~x1)

•
(~x1−3~x3)

Fig. 4 (cont.)
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